Generalized Canonical Correlation Analysis and Its Application to Blind Source Separation Based on a Dual-Linear Predictor Structure
نویسنده
چکیده
Blind source separation (BSS) is one of the most important and established research topics in signal processing and many algorithms have been proposed based on different statistical properties of the source signals. For second-order statistics (SOS) based methods, canonical correlation analysis (CCA) has been proved to be an effective solution to the problem. In this work, the CCA approach is generalized to accommodate the case with added white noise and it is then applied to the BSS problem for noisy mixtures. In this approach, the noise component is assumed to be spatially and temporally white, but the variance information of noise is not required. An adaptive blind source extraction algorithm is derived based on this idea and a further extension is proposed by employing a dual-linear predictor structure for blind source extraction (BSE).
منابع مشابه
The Geometry Of Kernel Canonical Correlation Analysis
Canonical correlation analysis (CCA) is a classical multivariate method concerned with describing linear dependencies between sets of variables. After a short exposition of the linear sample CCA problem and its analytical solution, the article proceeds with a detailed characterization of its geometry. Projection operators are used to illustrate the relations between canonical vectors and variat...
متن کاملJacobi iterations for Canonical Dependence Analysis
In this manuscript we will study the advantages of Jacobi iterations to solve the problem of Canonical Dependence Analysis. Canonical Dependence Analysis can be seen as an extension of the Canonical Correlation Analysis where correlation measures are replaced by measures of higher order statistical dependencies. We will show the benefits of choosing an algorithm that exploits the manifold struc...
متن کاملCalculation of Leakage in Water Supply Network Based on Blind Source Separation Theory
The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...
متن کاملA Canonical Correlation Approach to Blind Source Separation
A method based on canonical correlation analysis (CCA) for solving the blind source (BSS) problem is presented. In contrast to independent components analysis (ICA), the proposed method utilises the autocorrelation in the source signals. This makes the BSS problem easier to solve than if only the statistical distribution of the sample values is considered. Experiments show that the method is mu...
متن کاملFinding dependent and independent components from related data sets: A generalized canonical correlation analysis based method
In this paper, we consider an extension of independent component analysis (ICA) and blind source separation (BSS) techniques to several related data sets. The goal is to separate mutually dependent and independent components or source signals from these data sets. This problem is important in practice, because such data sets are common in real-world applications. We propose a new method which f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014